欢迎来到糖化学与生物技术教育部重点实验室
细胞工程课题组
  2019-04-23   来源:  

 

长简介
姓名:               高晓冬 (Xiao-Dong Gao)

出生年月:    1965年1月14日
职称:               教授,博士生导师

研究领域:    细胞分子生物学、糖生物学、生物工程
人才称号:    江苏省双创人才
E-mail:        xdgao@jiangnan.edu.cn/

教育背景
1990-1994     日本 东京大学农学研究科 获博士学位
1988-1990     日本 山梨大学工学研究科 获硕士学位
1984-1988     日本 山梨大学工学部 获学士学位

工作经历: 
2011-至今      江南大学生物工程学院 教授
2006-2011     日本 北海道大学 先端生命科学研究院 副教授 博士生导师
2003-2006     日本 国立产业综合研究所(AIST)糖锁研究中心主任研究员
2002-2003     美国 纽约州立大学 助理教授
1998-2002     美国 纽约州立大学 博士后研究员
1995-1998     日本 国立生命科学和技术研究所(NIBH)博士后

                                                                                                                                                                 

研究队伍
姓名:          王宁(Ning Wang)   
职称:           副研究员
研究領域:    糖生物学、糖化学生物学
E-mail:        wangning@jiangnan.edu.cn    

姓名:         李子杰(Zijie Li)      
职称:         副教授
E-mail:       lizijie@jiangnan.edu.cn


主要研究背景及目标

背景介绍

   N-糖基化是真核细胞蛋白质翻译后修饰的主要形式之一,它开始于内质网膜上的多萜醇寡糖前体DLO(dolichol-linked oligosaccharide)的合成。DLO由14个单糖组成,它们的修饰分别由13个糖基转移酶(Alg蛋白)来承担。DLO合成首先在内质网膜的胞质侧举行,随即被多萜醇寡糖翻转酶(flipase)把中间产物M5-Dol(Man5GlcNAc2-PP-Dol)从内质网膜外翻转到腔内,由腔内Alg糖基转移酶继续完成余下的修饰反应,生成最终产物Glc3Man9GlcNAc2-PP-Dol(图1)。最终产物的核心寡糖部分将被寡糖转移酶复合体OST(oligosaccharyltransferase complex)从多萜醇二磷酸上切开,转移到新翻译生成肽链的Asn-X-Ser/Thr序列中的天冬酰胺残基上形成N-糖苷键,从此开始它作为蛋白质N-聚糖的生涯。

   前期的研究积累证明内质网N-糖基化途径在各类真核细胞中保守性较高,酵母、植物和动物细胞都共有一致的Alg糖基转移酶和OST寡糖转移酶甚至M5-Dol翻转酶体系。但是,在一些寄生虫细胞(如:T. gondii; E. histolytica)中也发现了部分Alg糖基转移酶、OST寡糖转移酶和M5-Dol翻转酶体系相关基因的缺损现象,说明了内质网N-糖基化途径的多样性和复杂性。这些特征奠定了真核细胞N-糖基化修饰的研究以及其工业应用技术开发的基础。近期的研究结果显示DLO合成途径前期(胞质侧)的Alg糖基转移酶具有调控整个细胞N-糖基化的功能,但具体分子机制还有待阐明。另外,M5-Dol翻转酶至今尚未被发现,翻转机制仍处于谜团之中,留下了糖生物学界几十年来最大的“悬案”。本课题组致力于以上未知科学问题的研究和探索。我们的主要研究目标如下:

研究目标

1)真核细胞内质网N-糖基化修饰调控机制的阐明

  应用分子生物学、生物化学以及细胞遗传学等研究技术,针对多萜醇寡糖前体DLO合成关键糖基转移酶Alg的蛋白结构、复合体形成、反应机制以及其蛋白质降解体系等具体课题展开研究和探索,挑战“N-糖基化调控”这个糖生物学领域最关键的基础课题。

2)多萜醇寡糖翻转酶的筛选及翻转分子机制的解析

  以研究多萜醇寡糖翻转相关蛋白Rft1的确切功能为突破口,首先通过从不同真核细胞的基因文库中筛选酿酒酵母rft1温度敏感突变株的多拷贝抑制子的方法,进一步研究并确认Rft1的生理功能。同时,争取从多拷贝抑制子中发现并鉴定M5-Dol翻转酶或其他翻转体系相关蛋白编码基因,通过体外翻转酶活性测试,以及针对相应酵母或动物细胞突变菌株的进一步研究,从蛋白结构和生理活性上鉴定M5-Dol翻转酶及其相关蛋白的存在,并探索多萜醇寡糖翻转体系的分子机制。

3)N-糖链及糖蛋白化学酶法组装策略的开发

  应用原核表达体系,突破体外表达/纯化各种糖基转移酶的技术瓶颈;随后以化学合成的天然底物类似物为起始物,糖基转移酶催化反应延长糖链,利用化学酶法构建所需N-寡糖。同时开发固相/自动化合成的方法,探索固相酶法组装寡糖的新技术。进一步深入研究糖基转移酶生理活性、调控机制等,并为后续开发生物标记物及糖类药物打下基础。

4)真核细胞医药糖蛋白分泌表达体系的研发  

  充分利用内质网N-糖基化途径在各类真核细胞中具有高度保守性的特点,构建酵母和动物细胞外源糖蛋白表达体系,开发抗体等医药糖蛋白的生产技术。


主要科研项目 

2018-2021:国家自然科学基金 

2013-2016:江苏省双创高层次人才引进计划

2012-2015:教育部科学技术研究重大项目 

2012-2015:高等学校博士学科点专项科研基金


代表性科研成果  

SCI articles  

Corresponding author

1) Du Y, Xia Y, Zou Y, Hu Y, Fu J, Wu J, Gao XD*, Ma G*. Exploiting the Lymph-Node-Amplifying Effect for Potent Systemic and Gastrointestinal Immune Responses via Polymer/Lipid Nanoparticles. ACS Nano. 2019 Oct 21. doi: 10.1021/acsnano.9b04071.

2) Liu X, Li Z, Chen Z, Wang N, Gao Y, Nakanishi H*, Gao XD*. Production of l-Ribulose Using an Encapsulated l-Arabinose Isomerase in Yeast Spores. J Agric Food Chem. 2019 Apr 16. doi: 10.1021/acs.jafc.9b00640.

3) Li ST, Lu TT, Xu XX, Ding Y, Li Z, Kitajima T, Dean N, Wang N*, Gao XD*. Reconstitution of the lipid-linked oligosaccharide pathway for assembly of high-mannose N-glycans. Nat Commun. 2019 Apr 18;10(1):1813. doi: 10.1038/s41467-019-09752-3.

4) Li S-T, Wang N, Xu X-X, Fujita M, Nakanishi H, Kitajima T, Dean N*, Gao XD*. Alternative routes for synthesis of N-linked glycans by the Alg2 mannosyltransferase. The FASEB J. 2018 May; 32(5):2492-2506. doi: 10.1096/fj.201701267R. 

5) Kitajima T*, Xue W, Liu YS, Wang CD, Liu SS, Fujita M, Gao XD*. Construction of green fluorescence protein mutant to monitor STT3B-dependent N-glycosylation. FEBS J2018 Jan 11; 285(5):915-928. doi: 10.1111/febs.14375. 

6) Jin ZC, Kitajima T, Dong W, Huang YF, Ren WW, Guan F, Chiba Y, Gao XD*, Fujita M*. Genetic disruption of multiple α1,2-mannosidases generates mammalian cells producing recombinant proteins with high-mannose-type N-glycans. J Biol Chem. 2018 Apr 13; 293(15):5572-5584. doi: 10.1074/jbc.M117.813030.

7) Li S-T, Wang N, Xu S, Yin J, Nakanishi H*, Dean N, Gao XD*. Quantitative study of yeast Alg1 beta-1, 4 mannosyltransferase activity,a key enzyme involved in protein N-glycosylation. BBA-general subjects, 2017 Jan; 1861(1 Pt A): 2934-2941

First author

1) Gao XD, Moriyama S, Miura N, Dean N and Nishimura S-I*. (2008) Interaction between the C-termini of Alg13 and Alg14 mediate formation of the active UDP-N-acetylglucosamine transferase complex. J. Biol. Chem., 283: 32534-32541  

2) Gao XD, TachikawaH, SatoT, JigamiY and Dean N*. (2005) Alg14 recruits Alg13 to the cytoplasmic face of the endoplasmic reticulum to form a novel bipartite UDP-N-acetylglucosaminetransferase required for the second step of N-linked glycosylation. J. Biol. Chem., 280: 36254 – 36262  

3) Gao XD, Nishikawa A, and Dean N*. (2001) Identification of a conserved motif in the yeast GDP-mannose transporter required for nucleotide sugar binding. J. Biol. Chem., 276: 4424-4432.  

4) Gao XD and Dean, N*. (2000) Distinct protein domains of the yeast Golgi GDP-mannose transporter mediate oligomer assembly and export from the endoplasmic reticulum. J. Biol. Chem., 275: 17718-17727.  

5) Gao XD, Kaigorodov V and Jigami Y*. (1999) YND1, a homologue of GDA1, encodes membrane bound apyrase required for Golgi N- and 0-glycosylation in Saccharomyes cerevisiae., J. Biol. Chem., 274: 21450 – 21456.


近4年发表论文 

SCI articles(* corresponding author)

2020年:

1) Shao K, Li F, Yang Y, Wang N, Gao XD*, Nakanishi H*. Characteristics of SNARE proteins are defined by distinctive properties of SNARE motifs. Biochim Biophys Acta Gen Subj. 2020 Jun 5:129658. doi: 10.1016/j.bbagen.2020.129658.

2) Chen Z, Li Z, Li F, Wang N, Gao XD*. Characterization of alditol oxidase from Streptomyces coelicolor and its application in the production of rare sugars. Bioorg Med Chem. 2020 May 15;28(10):115464. doi: 10.1016/j.bmc.2020.115464.

3) Li ZJ*, Li F, Cai L, Chen Z, Qin L, Gao XD*. One-pot multi-enzyme synthesis of rare ketoses from glycerol. J Agric Food Chem. 2020 Feb 5;68(5):1347-1353. doi: 10.1021/acs.jafc.9b06748.

4) Zhao SB, Dean N, Gao XD, Fujita M*. MON2 guides Wntless transport to the Golgi through recycling endosomes. Cell Struct Funct. 2020 May 12. doi: 10.1247/csf.2001.

5) Basiony M, Yang Y, Liu G, Gao XD*, Nakanishi H*. Studies on the Properties of the Sporulation Specific Protein Dit1 and its Product Formyl Tyrosine. J Fungi (Basel). 2020 Jun 3;6(2):E77. doi: 10.3390/jof6020077.

6) Jin Y, Okamoto M, Chibana H, Liu G, Gao XD*, Nakanishi H*. Functional characteristics of Svl3 and Pam1 that are required for proper cell wall formation in yeast cells. Yeast. 2020 Jun 3. doi: 10.1002/yea.3502.

7) Li Z, Liu X, Nakanishi H, Gao XD*. Encapsulation of Mannose-6-phosphate Isomerase in Yeast Spores and Its Application in L-Ribose Production. J Agric Food Chem. 2020 Jun 3. doi: 10.1021/acs.jafc.0c02399.

2019年
1) Li ST, Lu TT, Xu XX, Ding Y, Li Z, Kitajima T, Dean N, Wang N*, Gao XD*. Reconstitution of the lipid-linked oligosaccharide pathway for assembly of high-mannose N-glycans. Nat Commun. 2019 Apr 18;10(1):1813. doi: 10.1038/s41467-019-09752-3.

2) Chen Z, Li ZJ*, Li F, Wang M, Y Gao, Wang N, Gao XD*. Cascade synthesis of rare ketoses by whole cells based on L-rhamnulose-1-phosphate aldolase. Enzyme and Microbial Technology, 2019 Oct. DOI: 10.1016/j.enzmictec.2019.109456.

3) Du Y, Xia Y, Zou Y, Hu Y, Fu J, Wu J, Gao XD*, Ma G*. Exploiting the Lymph-Node-Amplifying Effect for Potent Systemic and Gastrointestinal Immune Responses via Polymer/Lipid Nanoparticles. ACS Nano. 2019 Oct 21. doi: 10.1021/acsnano.9b04071.

4) Li A, Duan S, Dang Y, Zhang X, Xia K, Liu S, Han X, Wen J, Li Z, Wang X, Liu J, Yuan P, Gao XD*. Origin identification of Chinese Maca using electronic nose coupled with GC-MS. Sci Rep. 2019 Aug 21;9(1):12216. doi: 10.1038/s41598-019-47571-0.

5) Shao K, Wang Q, Wang N, Gao XD*, Nakanishi H*. Construction of functional chimeras of syntaxin-1A and its yeast orthologue, and their application to the yeast cell-based assay for botulinum neurotoxin serotype C. Biochim Biophys Acta Gen Subj. 2019 Jul 11. pii: S0304-4165(19)30176-X. doi: 10.1016/j.bbagen.2019.07.005. 

6) Liu X, Li Z, Chen Z, Wang N, Gao Y, Nakanishi H*, Gao XD*. Production of l-Ribulose Using an Encapsulated l-Arabinose Isomerase in Yeast Spores. J Agric Food Chem. 2019 Apr 16. doi: 10.1021/acs.jafc.9b00640.

7) Zhao SB, Suda Y, Nakanishi H, Wang N, Yoko-O T, Gao XD*, Fujita M*. Yeast Dop1 is required for glycosyltransferase retrieval from the trans-Golgi network. BBA-general subjects. 2019 Apr 11. pii: S0304-4165(19)30086-8. doi: 10.1016/j.bbagen.2019.04.009.

8) Feng S, Zhang H, Xu S, Zhi C, Nakanishi H, Gao XD*. Folate-conjugated, mesoporous silica functionalized boron nitride nanospheres for targeted delivery of doxorubicin. Mater Sci Eng C Mater Biol Appl. 2019 Mar;96:552-560. doi: 10.1016/j.msec.2018.11.063.

9) Mensah EO, Guo XY, Gao XD, Fujita M*.Establishment of DHFR-deficient HEK293 cells for high yield of therapeutic glycoproteins. J Biosci Bioeng. 2019 Apr 25. pii: S1389-1723(19)30081-7. doi: 10.1016/j.jbiosc.2019.04.005

10) Ren WW, Jin ZC, Dong W, Kitajima T, Gao XD*, Fujita M*. Glycoengineering of HEK293 cells to produce high-mannose-type N-glycan structures. J Biochem. 2019 May 7. pii: mvz032. doi: 10.1093/jb/mvz032.

11) Rao J, Zhang R, Liang H, Gao XD, Nakanishi H, Xu Y*. Efficient chiral synthesis by Saccharomyces cerevisiae spore encapsulation of Candida parapsilosis Glu228Ser/(S)-carbonyl reductase II and Bacillus sp. YX-1 glucose dehydrogenase in organic solvents. Microb Cell Fact. 2019 May 20;18(1):87. doi: 10.1186/s12934-019-1137-6.

2018年:

1) Xu XX, Li ST, Wang N, Kitajima T, Yoko-O T, Fujita M, Nakanishi H, and Gao XD*. Structural and functional analysis of Alg1 beta-1,4 mannosyltransferase reveals the physiological importance of its membrane topology. Glycobiology. 2018 Oct 1; 28(10):741-753

2) Mutumwinka D, Zhao SB, Liu YS, Mensah EO, Gao XD*, Fujita M*. PiggyBac-based screening identified BEM4 as a suppressor to rescue growth defects in och1-disrupted yeast cells.Biosci Biotechnol Biochem.2018 Jun 08; 82(9):1497-1507. doi: 10.1080/09168451.2018.1482193.

3) Jin ZC, Kitajima T, Dong W, Huang YF, Ren WW, Guan F, Chiba Y, Gao XD*, Fujita M*. Genetic disruption of multiple α1,2-mannosidases generates mammalian cells producing recombinant proteins with high-mannose-type N-glycans. J Biol Chem. 2018 Apr 13; 293(15):5572-5584. doi: 10.1074/jbc.M117.813030.

4) Kitajima T*, Xue W, Liu YS, Wang CD, Liu SS, Fujita M, Gao XD*. Construction of green fluorescence protein mutant to monitor STT3B-dependent N-glycosylation. FEBS J. 2018 Jan 11; 285(5):915-928. doi: 10.1111/febs.14375.

5) Bemena LD., Mukama O., Wang N., Gao XD*. and Nakanishi H*. Characterization of a yeast sporulation-specific P450 family protein, Dit2, using an in vitro assay to crosslink formyl tyrosine. J Biochem. 2018 Feb 1; 163(2):123-131. doi: 10.1093/jb/mvx067.

6) Li S-T, Wang N, Xu X-X, Fujita M, Nakanishi H, Kitajima T, Dean N*, Gao XD*. Alternative routes for synthesis of N-linked glycans by the Alg2 mannosyltransferase. The FASEB J. 2018 May; 32(5):2492-2506. doi: 10.1096/fj.201701267R.

7) Pan HP, Wang N, Tachikawa H, Gao XD*, Nakanishi H*. Osw2 is required for proper assembly of glucan and/or mannan layers of the yeast spore wall. J Biochem. 2018 Apr 1; 163(4):293-304. doi: 10.1093/jb/mvx082.

8) Xu XX, Komatsuzaki A, Chiba Y, Gao XD*, Yoko-O T*. PER1, GUP1, and CWH43 of methylotrophic yeast Ogataea minuta are involved in cell wall integrity. Yeast. 2018 Feb; 35(2):225-236. doi: 10.1002/yea.3285.

9) Feng S, Zhang H, Zhi C, Gao XD, Nakanishi H*. pH-responsive charge-reversal polymer-functionalized boron nitride nanospheres for intracellular doxorubicin delivery. Int J Nanomedicine. 2018 Jan 31;13:641-652. doi: 10.2147/IJN.S153476.

10) Liu YS, Guo XY, Hirata T, Rong Y, Motooka D, Kitajima T, Murakami Y, Gao XD, Nakamura S, Kinoshita T, Fujita M*. N-Glycan-dependent protein folding and endoplasmic reticulum retention regulate GPI-anchor processing. J Cell Biol. 2018 Feb 5; 217(2):585-599. doi: 10.1083/jcb.201706135.

11) Kitajima T, Jia Y, Komatsuzaki A, Cui J, Matsuzawa F, Aikawa SI, Gao XD, Chiba Y*. Structural modeling and mutagenesis of endo-β-N-acetylglucosaminidase from Ogataea minuta identifies the importance of Trp295 for hydrolytic activity. J Biosci Bioeng. 2018 Feb; 125(2):168-174. doi: 10.1016/j.jbiosc.2017.08.014.

2017年:

1) Bemena LD, Mukama O, Neiman AM, Li Z, Gao XD* and Nakanishi H*. In vitro reconstitution of the yeast spore wall dityrosine layer to disclose the mechanism of its assembly. J Biol Chem. 2017 Sep 22;292(38):15880-15891. doi: 10.1074/jbc.

2) Nakanishi H., Li F; Han B., Arai S., Gao XD*, Yeast cells as an assay system for in vivo O-GlcNAc modification. BBA-general subjects, 2017 May; 1861(5 Pt A): 1159-1167. doi: 10.1016/j.bbagen.2017.03.002.

3) Li S-T., Wang N., Xu S., Yin J, Nakanishi H*., Dean N, Gao XD*. Quantitative study of yeast Alg1 beta-1, 4 mannosyltransferase activity, a key enzyme involved in protein N-glycosylation. BBA-general subjects, 2017 Jan;1861(1 Pt A): 2934-2941. doi: 10.1016/j.bbagen.2016.09.023.

4) Zhang, HJ., Yan, T., Xu, S., Feng, SN., Huang, DD., Fujita, M., Gao, XD*. Graphene oxide-chitosan nanocomposites for intracellular delivery of immunostimulatory CpG oligodeoxynucleotides. Materials Science and Engineering: C. 73:144-51 (2017)

5) Pan HP, Wang N, Tachikawa H, Nakanishi H* and Gao XD*. β-1,6-glucan synthesis-associated genes are required for proper spore wall formation in Saccharomyces cerevisiaeYeast.2017 Jul 21. doi: 10.1002/yea.3244. doi: 10.1002/yea.3244.

6) Yan T., Zhang H.*, Huang D., Feng S., Fujita M. and Gao XD*. Chitosan-functionalized graphene oxide as potential immunoadjuvant. Nanomaterials (Basel). 2017 Mar 8;7(3). doi: 10.3390/nano7030059

7) Kong J., Li Z., Zhang H., Gao XD* and Nakanishi H*. Production of encapsulated creatinase using yeast spores, Bioengineered. 2017 Jul 4;8(4):411-419. doi: 10.1080/21655979.2016.1241926.

8) Kong J., Li Z., Zhang H., Gao XD* and Nakanishi H*. Consecutive hydrolysis of creatinine using creatininase and creatinase encapsulated in Saccharomyces cerevisiaespores, Biotechnology Letters, 2017 Feb;39(2):261-267. DOI: 10.1007/s10529-016-2234-9. Epub 2016 Oct 12.PMID: 27734207

9) Matabaro E., He Z’a., Liu Y-S., Zhang H.,Gao XD and Fujita M*. Molecular switching system using glycosylphosphatidylinositol to select cells highly expressing recombinant proteins. Scientific Rep. Jun 22; 7(1): 4033. Doi: 10.1038/s41598-017-04330-3.

10) Nakamura TS, Numajiri Y, Okumura Y, Hidaka J, Tanaka T, Inoue I, Suda Y, Takahashi T, Nakanishi H, Gao XD, Neiman AM, Tachikawa H*. Dynamic localization of a yeast development-specific PP1 complex during prospore membrane formation is dependent on multiple localization signals and complex formation. Mol Biol Cell. 2017 Oct 18. pii: mbc.E17-08-0521. doi: 10.1091/mbc.

11) Kitajima T, Jia Y, Komatsuzaki A, Cui J, Matsuzawa F, Aikawa SI, Gao XDChiba Y*. Structural modeling and mutagenesis of endo-β-N-acetylglucosaminidase from Ogataea minuta identifies the importance of Trp295 for hydrolytic activity. J Biosci Bioeng. 2017 Sep 11. pii: S1389-1723(17)30571-6.

12) Nakamura TS, Numajiri Y, Okumura Y, Hidaka J, Tanaka T, Inoue I, Suda Y, Takahashi T, Nakanishi H, Gao XD, Neiman AM, Tachikawa H*. (2017) Dynamic localization of a yeast development-specific PP1 complex during prospore membrane formation is dependent on multiple localization signals and complex formation. Mol Biol Cell. 2017 Oct 18. pii: mbc. E17-08-0521. doi: 10.1091/mbc.

13) Matabaro E., He Z’a., Liu Y-S., Zhang H., Gao XD and Fujita M*. Molecular switching system using glycosylphosphatidylinositol to select cells highly expressing recombinant proteins. Scientific Rep. Jun 22; 7(1): 4033.Doi: 10.1038/s41598-017-04330-3.

 

著作和综述: 

Reviews

1) Li A., Cai L., Chen Z., Wang M., Wang N., Nakanishi H, Gao XD*, Zijie Li,* Recent advances in the synthesis of rare sugars using DHAP-Dependent aldolases. Carbohydrate Research October 2017. DOI: 10.1016/j.carres.2017.10.009

2) Wang N., Li S-T., Lu T., Nakanishi H,Gao XD*. Approaches towards the core pentasaccharide in N-linked glycans. Chinese Chemical Letters, 2017, doi 10.1016/j.cclet.2017.09.044

3) Zhang H and Gao XD*. Nanodelivery systems for enhancing the immunostimulatory effect of CpG oligodeoxynucleotides. Mater Sci Eng C Mater Biol Appl. 2017 Jan 1; 70(Pt 2):935-946. doi: 10.1016/j.msec.2016.03.045.

4) Xu, S. Nakanishi H. and Gao X-D. (2013) Advances in the production of humanized glycoprotein by different expression systems. Acta Microbiol Sinica. 53(3): 221-229

5) Zijie Li, Yahui Gao, Hideki Nakanishi, Xiao-Dong Gao*, Li Cai*. (2013) Biosynthesis of Rare Hexoses Using Microorganisms and Related Enzymes. Beilstein Journal of Organic Chemistry, 9: 2434–2445

6) Takahashi Tetsuo and Gao Xiao-Dong* (2012) Physical Interactions among Human Glycosyltransferases Involved in Dolichol-Linked Oligosaccharide Biosynthesis. Trends Glycosci. Glycotechnol. Vol.23, No.136 (March 2012) pp65-77.

7) 高暁冬、地神芳文 (2006) ALG13/ALG14複合体が担うβ1,4GlcNAc転移酵素の活性, Functional Glycomics News Letter, No. 8 August 2006, p36-41

 

Book chapters and Interviews

1) Morihisa Fujita, Xiao-Dong Gao, Taroh Kinoshita. Glycan-Mediated Protein Transport from the Endoplasmic Reticulum; In book: Sugar Chains (ISBN: 978-4-431-55380-9 (Print) 978-4-431-55381-6 (Online) DOI: 10.1007/978-4-431-55381-6); Chapter: 2, Publisher: Springer Japan, Editors: Tadashi Suzuki, Kazuaki Ohtsubo, Naoyuki Taniguchi; pp 21-34 (2015)

2) Morihisa Fujita, Xiao-Dong Gao, Taroh Kinoshita. Glycan-Mediated Protein Transport from the Endoplasmic Reticulum; In book:  Sugar Chains (ISBN: 978-4-431-55380-9 (Print)  978-4-431-55381-6 (Online) DOI: 10.1007/978-4-431-55381-6); Chapter: 2, Publisher: Springer Japan, Editors: Tadashi Suzuki, Kazuaki Ohtsubo, Naoyuki Taniguchi; pp 21-34 (2015)

3) Dean N., Gao XD., Dolichyl-phosphate (UDP-N-acetylglucosamine) N-acetylglucosaminephosphotransferase 1 (GlcNAc-1-P transferase) (DPAGT1); In book: Handbook of Glycosyltransferases and Related Genes (ISBN: 978-4-431-54239-1 (Print) 978-4-431-54240-7 (Online), DOI: 10.1007/978-4-431-54240-7); Edition: Second, Chapter: 108, Publisher: Springer Japan, Editors: Naoyuki Taniguchi; Koichi Honke; Minoru Fukuda; Hisashi Narimatsu; Yoshiki Yamaguchi; Takashi Angata, pp. 1223-1230 (2014)

4) Dean N., Gao XD*. Heterodimeric Alg13/Alg14 UDP-GlcNAc Transferase (ALG13,14); In book: Handbook of Glycosyltransferases and Related Genes (ISBN: 978-4-431-54239-1 (Print) 978-4-431-54240-7 (Online), DOI: 10.1007/978-4-431-54240-7); Edition: Second, Chapter: 109, Publisher: Springer Japan, Editors: Naoyuki Taniguchi; Koichi Honke; Minoru Fukuda; Hisashi Narimatsu; Yoshiki Yamaguchi; Takashi Angata, pp. 1231-1238 (2014)

5) Gao, XD, S. Moriyama, N, Miura and Shin-Ichiro Nishimura, (2009)Molecular Imaging for Integrated Medical Therapy and Drug Development: Functional and Structural Analysis Reveals Dual Function on C-terminal  Helix of Alg13 protein, Springer,  p260-280.

6) 地神芳文、高暁冬、新間陽一;『糖鎖科学の新展開』: 酵母による糖転移酵素の発現とその利用 (2005);(株)エヌ・ティー・エス出版

7) Gao, X-D.Dedicated postdoc』:General contentment marks gender gap in AAAS salary and job survey (2001), Science, 294 (5541): p410


所获专利
1)地神 芳文、千木良 裕子、高 暁冬: O-フコース結合タンパク質合成系遺伝子が導入された酵母形質転換体、特許第4258662号(JAPAN)、February 20th.2009
2)中西秀树,高晓冬,张海妮,李子杰.一种以酿酒酵母孢子为载体的新型固定化酶的制备方法. 2013.9,中国,专利号:201310422568.8

 

荣誉&奖励
1)2013年:    “江苏省六大人才高峰”
2)2011年: “江苏省双创高层次人才引进计划”
3)2001年:  Selected and Interviewed as “Dedicated postdoc” by AAAS  [Ref: Science, 294(5541): p410 (2001)]
4)2000年: 荣获美国杰出科技人才签证(O1) 
5)1984年: 中国教育部派遣本科留学生(April 1984 --- March 1993)

技术支持:信息化建设与管理中心
           校内备案号:JW备170140.

地址:江苏省无锡市蠡湖大道1800号
           邮编:214122      
           联系电话:0510-85918517      
           服务邮箱:klccb@jiangnan.edu.cn